Enantioseparation and amperometric detection of chiral compounds by in situ molecular imprinting on the microchannel wall.
نویسندگان
چکیده
The molecular imprinting technique was first introduced into the microchannel of a microfluidic device to form in situ the imprinted polymer for fast enantioseparation of chiral compounds. The molecularly imprinted polymer (MIP) was in situ chemically polymerized on the microchannel wall using acrylamide as the functional monomer and ethylene glycol dimethacrylate as the cross-linker, and characterized by scanning electron microscopy, atomic force microscopy, and infrared spectroscopy. Under the optimized conditions, such as optimal preparation of MIP, composition and pH of mobile phase, and separation voltage, the model enantiomers, tert-butoxycarbonyl-D-tryptophan (Boc-D-Trp) and Boc-L-Trp, could be baseline separated within 75 s. The linear ranges for amperometric detection of the enantiomers using carbon fiber microdisk electrode at +1.2 V (vs Ag/AgCl) were from 75 to 4000 microM and 400 to 4000 microM with the detection limits of 20 and 140 microM, respectively. The MIP-microchip electrophoresis provided a powerful protocol for separation and detection of Boc-Trp enantiomers within a short analytical time. The molecular imprinting on microchannel wall opens a promising avenue for fast enantioscreening of chiral compounds.
منابع مشابه
Convenient enantioseparation by monolithic imprinted capillary clamped in a chip with electrochemical detection.
A microchip integrated with a monolithic imprinted capillary has been manufactured for performing the chip-based capillary electrochromatographic enantioseparation. The microporous monolith anchored on the inner wall of the microchannel was prepared by in situ chemical copolymerization, and characterized with scanning electron microscopy, IR spectroscopy, and solid-state UV-vis spectroscopy. Th...
متن کاملSimultaneous multiple enantioseparation with a one-pot imprinted microfluidic channel by microchip capillary electrochromatography.
A multi-template imprinted microchannel was prepared by a one-pot in situ imprinting process. The imprinted microchannel led to a novel chip-based strategy for simultaneous multiple enantioseparation. The one-pot imprinting process formed a multi-template imprinted porous thin layer (about 2 μm) on the inner wall of the capillary, which was characterized by scanning electron microscopy, infrare...
متن کاملImprovement of Capillary Electrophoretic Enantioseparation of Fluoxetine by a Cationic Additive
One of the problems encountered in CE separations of basic compounds is the adsorption of analytes onto the negatively charged capillary wall which could lead to poor repeatability of migration time and peak area. Additionally, separation of enantiomers of chiral of basic drugs is commonly carried out in low pH buffer which contributes to strong ionic interaction of the cationic drug ions with ...
متن کاملImprovement of Capillary Electrophoretic Enantioseparation of Fluoxetine by a Cationic Additive
One of the problems encountered in CE separations of basic compounds is the adsorption of analytes onto the negatively charged capillary wall which could lead to poor repeatability of migration time and peak area. Additionally, separation of enantiomers of chiral of basic drugs is commonly carried out in low pH buffer which contributes to strong ionic interaction of the cationic drug ions with ...
متن کاملImprovement of Electrophoretic Enantioseparation of Amlodipine by Polybrene
In chiral and non-chiral electrophoretic resolution of basic drugs, adsorption of analytes to negatively charged capillary wall could lead to poor repeatability of migration time and peak area. In addition, chiral resolutions of basic drugs are commonly performed in low pH buffers. Therefore, longer analysis time due to suppression of electroosmotic flow (EOF) is another dilemma. In this wor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 81 23 شماره
صفحات -
تاریخ انتشار 2009